Abstract

Abstract Geometric modeling has been integral to the design process with the introduction of Computer-Aided Design. With additive manufacturing (AM), design freedom has reached new heights, allowing for the production of complex lattice structures not feasible with traditional manufacturing methods. However, there remains a significant challenge in the geometric modeling of these lattice structures, especially for heterogeneous strut-based lattice structures. Current methods show limitations in accuracy or geometric control. This paper presents the Virtual-Trim, a novel method for the geometric modeling of heterogeneous strut-based lattice structures that is both efficient and robust. Virtual-Trim begins with user-defined wireframe models and geometric information to create STL (STereoLithography) models ready for AM, eliminating the need for labor-intensive Boolean operations. The fundamental principles and steps involved in Virtual-Trim are extensively described within. Additionally, various models using Virtual-Trim method are designed, and the performance of Virtual-Trim in terms of generation time and model size is analyzed. The successful printing of these models attests to the method’s excellent manufacturability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call