Abstract

Abstract Geometric modelling has been a crucial component of the design process ever since the introduction of the first computer-aided design systems. Additive Manufacturing (AM) pushes design freedom to previously unachievable limits. AM allows the manufacturing of lattice structures which are otherwise close to impossible to be manufactured conventionally. Yet, the geometric modelling of heterogeneous lattice structures is still greatly limited. Thus, the AM industry is now in a situation where the manufacturing capabilities exceed the geometric modelling capabilities. While there have been advancements in the modelling of heterogeneous lattice structures, the review of relevant literature revealed critical limitations of the existing approaches. These limitations include their inability to model non-linear variation of geometric parameters, as well as the limited amount of controllable geometric parameters. This work presents a novel geometric modelling methodology based on function representation as an attempt to bridge this gap. The proposed approach avoids the manual definition of geometric parameters and provides a method to control them with mathematical functions instead. A software prototype implementing the proposed approach is presented, and several use-cases are analysed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call