Abstract

Lattice structure is a type of cellular structures which is made of interconnected struts. It attracts a great research interest, since it can achieve different desired properties for a broad spectrum of applications. To generate the geometric model of lattice structures with multiscale complexities is not an easy task for most existing conventional CAD software, especially when the number of cells or struts is very large. To solve this issue, an innovative hybrid geometric modeling method is proposed in this paper. This proposed method can be divided into three steps. They are lattice frame generation, construction of geometric functions, and voxelization. A detailed description of the algorithms and data structures used in each stage are provided in this paper. Several case studies are given at the end of this paper to illustrate the effectiveness and efficiency of the proposed method. In general, by integrating the advantages of several different geometric modeling methods, the proposed method not only provides an efficient and flexible way for designers to generate different types of lattice structures for desired properties, but also offers an interface between the geometric and simulation model of lattice structures. It further removes the barrier in the design and optimization of lattice structures with multiscale complexities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call