Abstract

Abstract This paper presents a strength-based simultaneous optimization method for optimizing thermoelastic structural topology and print direction in the presence of anisotropy induced by additive manufacturing. The approach utilizes the bi-directional evolutionary structural optimization (BESO) framework and defines design variables including element density and print-off angle. Firstly, an anisotropic thermoelastic constitutive model is established for finite element analysis. By introducing the Tsai-Hill failure criteria, the strength constraint to evaluate the stress level of additively manufactured anisotropic components is formulated. The P-norm aggregation function is employed to approximate the maximum strength failure coefficient. Then, the aggregated strength constraint is augmented to the optimization objective through a Lagrange multiplier. Sensitivity analysis of the new objective function with respect to the elemental design variables is performed, and an analytical approach is proposed to optimize the print-off angle. To improve the stability of the optimization procedure, a series of numerical algorithms and parameter updating strategies are developed. The effectiveness of our proposed method is demonstrated through typical numerical examples, highlighting a desirable match between the structural topology and the print direction can greatly improve the structural performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call