Abstract

Virtual view-point generation is one of the key technologies the three-dimensional (3D) display, which renders the new scene image perspective with the existing viewpoints. The three-dimensional scene information can be effectively recovered at different viewing angles to allow users to switch between different views. However, in the process of multiple viewpoints matching, when N free viewpoints are received, we need to match N viewpoints each other, namely matching C 2N = N(N-1)/2 times, and even in the process of matching different baselines errors can occur. To address the problem of great complexity of the traditional virtual view point generation process, a novel and rapid virtual view point generation algorithm is presented in this paper, and actual light field information is used rather than the geometric information. Moreover, for better making the data actual meaning, we mainly use nonnegative tensor factorization(NTF). A tensor representation is introduced for virtual multilayer displays. The light field emitted by an N-layer, M-frame display is represented by a sparse set of non-zero elements restricted to a plane within an Nth-order, rank-M tensor. The tensor representation allows for optimal decomposition of a light field into time-multiplexed, light-attenuating layers using NTF. Finally, the compressive light field of multilayer displays information synthesis is used to obtain virtual view-point by multiple multiplication. Experimental results show that the approach not only the original light field is restored with the high image quality, whose PSNR is 25.6dB, but also the deficiency of traditional matching is made up and any viewpoint can obtained from N free viewpoints.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call