Abstract
A virtual element discretisation for the numerical approximation of the three-field formulation of linear poroelasticity introduced in R. Oyarzúa and R. Ruiz-Baier, (SIAM J. Numer. Anal. 54 2951–2973, 2016) is proposed. The treatment is extended to include also the transient case. Appropriate poroelasticity projector operators are introduced and they assist in deriving energy bounds for the time-dependent discrete problem. Under standard assumptions on the computational domain, optimal a priori error estimates are established. These estimates are valid independently of the values assumed by the dilation modulus and the specific storage coefficient, implying that the formulation is locking-free. Furthermore, the accuracy of the method is verified numerically through a set of computational tests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.