Abstract

The aim of this paper is to develop a virtual element method for the two-dimensional Steklov eigenvalue problem. We propose a discretization by means of the virtual elements presented in [L. Beirão da Veiga et al., Basic principles of virtual element methods, Math. Models Methods Appl. Sci.23 (2013) 199–214]. Under standard assumptions on the computational domain, we establish that the resulting scheme provides a correct approximation of the spectrum and prove optimal-order error estimates for the eigenfunctions and a double order for the eigenvalues. We also prove higher-order error estimates for the computation of the eigensolutions on the boundary, which in some Steklov problems (computing sloshing modes, for instance) provides the quantity of main interest (the free surface of the liquid). Finally, we report some numerical tests supporting the theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.