Abstract

Irrigation water is a doorway for the pathogen contamination of fresh produce. We quantified pathogenic viruses [human adenoviruses, noroviruses of genogroups I and II, group A rotaviruses, Aichi virus 1 (AiV-1), enteroviruses (EnVs), and salivirus (SaliV)] and examined potential index viruses [JC and BK polyomaviruses (JCPyVs and BKPyVs), pepper mild mottle virus (PMMoV), and tobacco mosaic virus (TMV)] in irrigation water sources in the Kathmandu Valley, Nepal. River, sewage, wastewater treatment plant (WWTP) effluent, pond, canal, and groundwater samples were collected in September 2014, and in April and August 2015. Viruses were concentrated using an electronegative membrane-vortex method and quantified using TaqMan (MGB)-based quantitative PCR (qPCR) assays with murine norovirus as a molecular process control to determine extraction-reverse transcription-qPCR efficiency. Tested pathogenic viruses were prevalent with maximum concentrations of 5.5-8.8 log10 copies/L, and there was a greater abundance of EnVs, SaliV, and AiV-1. Virus concentrations in river water were equivalent to those in sewage. Canal, pond, and groundwater samples were found to be less contaminated than river, sewage, and WWTP effluent. Seasonal dependency was clearly evident for most of the viruses, with peak concentrations in the dry season. JCPyVs and BKPyVs had a poor detection ratio and correspondence with pathogenic viruses. Instead, the frequently proposed PMMoV and the newly proposed TMV were strongly predictive of the pathogen contamination level, particularly in the dry season. We recommend utilizing canal, pond, and groundwater for irrigation to minimize deleterious health effects and propose PMMoV and TMV as indexes to elucidate pathogenic virus levels in environmental samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call