Abstract

ABSTRACT Surface spectroscopy analysis and electrochemistry were applied to study the effects of surface preparation by vibratory polishing on the passivity of stainless steel 304L surfaces. Compared to grinding by traditional mechanical polishing, vibratory polishing promotes the enrichment of Cr(III) oxide and hydroxide species in the duplex chemical structure of the surface native oxide film by enhancing selective Fe oxidation and dissolution. As a result, spontaneous passivity, tested in aggressive sulphuric acid electrolyte, is enhanced. However, in the absence of enrichment in Mo(IV) and Mo(VI) species in the passive film, the Cr enrichment does not enhance passivity upon anodic polarisation nor increase the resistance to Cl-induced passivity breakdown and initiation of localised corrosion in accelerated testing conditions. The results provide comprehensive insight into the mechanisms underlying the passivity enhancement of stainless steel by surface engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call