Abstract

In diesel engines, variable geometry turbocharger (VGT) and exhaust gas recirculation (EGR) systems are used to increase engine specific power and reduce NOx emissions, respectively. Because the dynamics of both the VGT and EGR are highly nonlinear and coupled to each other, better performance may be attained by substituting nonlinear multiple input, multiple output (MIMO) controllers for the existing conventional lookup table-based linear controllers. This paper presents a coordinated VGT/EGR control system for common-rail direct injection diesel engines. The objective of the control system is to track target mass air flow and target intake manifold pressure by adjusting the EGR and VGT actuator positions. We designed a nonlinear MIMO control system using a neural control scheme that adopts an indirect adaptive control approach. The neural control system is comprised of a neural network identifier, which mimics the target air system, and a neural network controller, which calculates the actuator positions. The proposed control system has been validated with engine experiments under transient operating conditions. It was demonstrated from experimental results that the proposed control system shows improved target value tracking performance over conventional VGT/EGR control system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.