Abstract

In this paper, a sliding mode observer is proposed to estimate exhaust pressure for a diesel engine equipped with variable geometry turbocharger (VGT) and exhaust gas recirculation (EGR) systems. Since the exhaust pressure directly affects generation of the VGT power and the EGR rate in the cylinder, the exhaust pressure information is important for precise control of the VGT and EGR systems. In order to estimate the exhaust pressure accurately, a dynamic model of intake and exhaust pressure was derived. Furthermore, the mass flow rate and temperature of the air system in the diesel engines were modeled by consideration of physical phenomena and the thermodynamic law. Based on the developed models, a nonlinear sliding mode observer was designed to estimate the exhaust pressure. Convergence of the proposed observer was verified by the Lyapunov stability criterion. The proposed observer was implemented on a real-time embedded system and validated with the engine experiments. The experimental results show that the observer estimates the exhaust pressure accurately in both steady and transient engine operating conditions. Moreover, as a case study, the estimation results of the proposed observer could be applied for detecting a fault of the EGR system. The fault of the EGR system was detected precisely using the estimation result and the limited sensor information in mass-produced engines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call