Abstract

Ocean wireless sensor networks (OWSNs) play an important role in marine environment monitoring, underwater target tracking, and marine defense. OWSNs not only monitor the surface information in real time but also act as an important relay layer for underwater sensor networks to establish data communication between underwater sensors and ship-based base stations, land-based base stations, and satellites. The destructive resistance of OWSNs is closely related to the marine environment where they are located. Affected by the dynamics of seawater, the location of nodes is extremely easy to shift, resulting in the deterioration of the connectivity of the OWSNs and the instability of the network topology. In this paper, a novel topology optimization model of OWSNs based on the idea of link prediction by cascading variational graph auto-encoders and adaptive multilayer filter (VGAE-AMF) was proposed, which attenuates the extent of damage after the network is attacked, extracts the global features of OWSNs by graph convolutional network (GCN) to obtain the graph embedding vector of the network so as to decode and generate a new topology, and finally, an adaptive multilayer filter (AMF) is used to achieve topology control at the node level. Simulation experiment results show that the robustness index of the optimized network is improved by 39.65% and has good invulnerability to both random and deliberate attacks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call