Abstract
With the rapid development of graph neural network technology, its application in the field of natural language processing is more and more extensive, text classification is one of the important applications, everyday life will produce a large number of non-Euclidean text data, while the traditional classification methods in the graphic structure of text data has been a great challenge. Graph convolutional neural network(GCN) is considered to be able to model the structural attributes and node feature information of graphs well, and is gradually becoming a good choice for text classification of graph data. This paper proposes a text classification model based on graph convolution network and neural network local enhancement. On the basis of using GCN to extract features, Bi-LSTM method is used to balance the experimental results, enrich the feature information by capturing local information, integrate the attention mechanism, and fuse the evaluation values to improve the accuracy of classification. It is verified that this method has achieved better results than the existing classification methods in many classical data sets such as 20NG and OHSUMED.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.