Abstract

Convolutional Neural Network (CNN) or Recurrent Neural Network (RNN) based text classification algorithms currently in use can successfully extract local textual features but disregard global data. Due to its ability to understand complex text structures and maintain global information, Graph Neural Network (GNN) has demonstrated considerable promise in text classification. However, most of the GNN text classification models in use presently are typically shallow, unable to capture long-distance node information and reflect the various scale features of the text (such as words, phrases, etc.). All of which will negatively impact the performance of the final classification. A novel Graph Convolutional Neural Network (GCN) with dense connections and an attention mechanism for text classification is proposed to address these constraints. By increasing the depth of GCN, the densely connected graph convolutional network (DC-GCN) gathers information about distant nodes. The DC-GCN multiplexes the small-scale features of shallow layers and produces different scale features through dense connections. To combine features and determine their relative importance, an attention mechanism is finally added. Experiment results on four benchmark datasets demonstrate that our model’s classification accuracy greatly outpaces that of the conventional deep learning text classification model. Our model performs exceptionally well when compared to other text categorization GCN algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.