Abstract

It is well known that machine learning models (e.g., image recognition) can unintentionally leak information about the training set. Conventional membership inference relies on posterior vectors, and this task becomes extremely difficult when the posterior is masked. However, current label-only membership inference attacks require a large number of queries during the generation of adversarial samples, and thus incorrect inference generates a large number of invalid queries. Therefore, we introduce a label-only membership inference attack based on model explanations. It can transform a label-only attack into a traditional membership inference attack by observing neighborhood consistency and perform fine-grained membership inference for vulnerable samples. We use feature attribution to simplify the high-dimensional neighborhood sampling process, quickly identify decision boundaries and recover a posteriori vectors. It also compares different privacy risks faced by different samples through finding vulnerable samples. The method is validated on CIFAR-10, CIFAR-100 and MNIST datasets. The results show that membership attributes can be identified even using a simple sampling method. Furthermore, vulnerable samples expose the model to greater privacy risks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.