Abstract

Polycrystalline GaN layers showing very strong photoluminescence (PL) intensities are successfully grown on amorphous fused silica (SiO 2) substrates by gas source molecular beam epitaxy (MBE) using an ion removed electron cyclotron resonance radical cell. The PL intensity is larger than that of undoped single crystalline GaN grown on sapphire by gas source MBE and is comparable to that of Si-doped single crystalline GaN grown on sapphire by metalorganic vapor-phase epitaxy at Nichia Chemical. The PL peak emission is considered to be excitonic. Undoped GaN layers grown on silica substrates exhibit n-type conduction and both n- and p-type conductions are achieved by impurity doping. These results open up the area of “Polycrystalline Semiconductor Photonics”.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call