Abstract

A new type of vertical nanowire (NW)/ nanosheet (NS) field-effect transistors (FETs), termed vertical sandwich gate-all-around (GAA) FETs (VSAFETs), is presented in this work. Moreover, an integration flow that is compatible with processes used in the mainstream industry is proposed for the VSAFETs. Si/SiGe epitaxy, isotropic quasi-atomic-layer etching (qALE), and gate replacement were used to fabricate pVSAFETs for the first time. Vertical GAA FETs with self-aligned high-k metal gates and a small effective-gate-length variation were obtained. Isotropic qALE, including Si-selective etching of SiGe, was developed to control the diameter/thickness of the NW/NS channels. NWs with a diameter of 10 nm and NSs with a thickness of 20 nm were successfully fabricated, and good device characteristics were obtained. Finally, the device performance was investigated and is discussed in this work.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call