Abstract
We demonstrate the versatility of the threshold voltage control for organic thin-film transistors (OTFTs) based on formation of discontinuous pn-heterojunction on the active channel layer. By depositing n-type dioctyl perylene tetracarboxylic diimide molecules discontinuously onto base p-type pentacene thin films (the formation of the discontinuous pn-heterojunction), a positive shift of the threshold voltage was attained which enabled realizing a depletion-mode transistor from an original enhancement-mode pristine pentacene transistor. Careful control of the threshold voltage based on this method led assembling a depletion-load inverter comprising a depletion-mode transistor and an enhancement-mode transistor connected in series that yielded tunable signal inversion voltage approaching 0V. In addition, the tunability could be applied to improve the program/erase signal ratio for non-volatile transistor memories by more than 4 orders of magnitude compared to reference memory devices made of pristine pentacene transistors.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have