Abstract

We complete the local study of rank--2 singular points of positive quadratic differential forms on oriented two--dimensional manifolds. We associate to each positive quadratic differential form $\omega$ defined on an oriented two--dimensional manifold $M$ two transversal one--dimensional foliations $f_1(\omega)$ and $f_2(\omega)$ with common set of singular points. This study was begun in [Gut-Gui] for a generic class of singularities called <em>simple</em>, and continued in [Gui-Sa] for those non--simple rank--2 singular points called of <em>type C</em>. Taking into account the classification of [Gui3], the only rank--2 singular points which remain to be studied are those of type E($\lambda$), for $\lambda\geq 1 $. We undertake the local study of the remaining case under a non--flatness condition on the positive quadratic differential form at the singular point.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.