Abstract
In [5], local problems around a class of rank-2 singular points called simple such as normal forms, finite determinacy, and versal unfoldings are studied for smooth positive quadratic differential forms on surfaces, as well as for their associated pair of foliations (with singularities). To extend this study to the class of rank-2 singular points, two cases of rank-2 singular points remain to be treated, namely that of type C and that of type E(λ), with λ≥1. Using the theory of normal forms for singularities of positive quadratic differential forms, we obtain the phase portrait and a versal unfolding for type C singular points proving that their codimension is three.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.