Abstract
Fourier-transform infrared spectroscopy (FTIR) is one of the commonly used techniques in chemical analysis. The chemical bonds that are present in samples absorb infrared light at various wavelengths based on the properties of chemical bonds between sets of atoms bonded together. By extracting these absorbance patterns, we aim to predict the presence or absence of various substructures within a compound based on its FTIR spectrum. Hypothetically, a powerful machine learning method with enough examples of a substructure should be able to identify the structure of an unknown compound by analyzing its FTIR spectrum. To this extent we developed a novel system that trains neural networks to predict the presence of various substructures within a compound. We then propose to apply metamorphic testing to verify the network training process. Experimental results exhibit that metamorphic testing helps to develop a more effective training process for classifier neural networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.