Abstract
Indoor air quality (IAQ) significantly impacts human health, particularly in enclosed spaces where people spend most of their time. This study evaluates the performance of low-cost IAQ sensors, focusing on their ability to measure carbon dioxide (CO2) and particulate matter (PM) under real-world conditions. Measurements provided by these sensors were verified against calibrated reference equipment. The study utilized two commercial devices from inBiot and Kaiterra, comparing their outputs to a reference sensor across a range of CO2 concentrations (500–1200 ppm) and environmental conditions (21–25 °C, 27–92% RH). Data were analyzed for relative error, temporal stability, and reproducibility. Results indicate strong correlation between low-cost sensors (LCSs) and the reference sensor at lower CO2 concentrations, with minor deviations at higher levels. Environmental conditions had minimal impact on sensor performance, highlighting robustness to temperature and humidity within the tested ranges. For PM measurements, low-cost sensors effectively tracked trends, but inaccuracies increased with particle concentration. Overall, these findings support the feasibility of using low-cost sensors for non-critical IAQ monitoring, offering an affordable alternative for tracking CO2 and PM trends. Additionally, LCSs can assess long-term exposure to contaminants, providing insights into potential health risks and useful information for non-expert users.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have