Abstract
Particulate matter (PM) is a critical component of urban air pollution, with severe implications for human health and environmental ecosystems. This study investigates the capacity of green roofs at the Warsaw University Library to mitigate air pollution by analyzing the retention of PM and associated trace elements (TEs) across eight perennial plant species during spring, summer, and autumn. The results highlight significant interspecies variability and seasonal trends in PM retention, with peak levels observed in summer due to increased foliage density and ambient pollution. Sedum spectabile and Spiraea japonica emerged as the most effective species for PM capture, owing to their wax-rich surfaces and dense foliage, while Betula pendula demonstrated a high retention of TEs like manganese and zinc. Seasonal shifts from surface-bound PM (SPM) to wax-bound PM (WPM) in autumn underline the importance of adaptive plant traits for sustained pollutant capture. These findings underscore the critical role of green roofs in urban air quality management, emphasizing the need for species-specific strategies to maximize year-round phytoremediation efficacy. Expanding the implementation of diverse vegetation on green roofs can significantly enhance their environmental and public health benefits.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have