Abstract
The Hadley mechanism is adopted to describe the axisymmetric four day superrotation in the Venus atmosphere, with solar driven meridional winds redistributing energy and momentum, and eddy diffusion describing the actions of three dimensional transient eddies. We address the question how the eddy diffusion coefficients are related to the properties of the circulation. For the atmosphere of a slowly rotating planet such as Venus, we show that a form of the non-linear closure is suggested by the mixing length hypothesis, which constrains the magnitude of the eddy diffusion coefficients. Combining this constraint with the concept of the Rossby radius of deformation yields zonal velocities on the order of 100 m sec−1. A steady state, non-linear, one-layer spectral model is used for a parametric study to find a relationship between heat source, meridional circulation and eddy diffusion coefficients, which yields the large zonal velocities observed. This analysis leads to the following conclusions: (1) Proportional changes in the heat source and eddy diffusion coefficients do not significantly change the zonal velocities. (2) The meridional velocity is virtually constant for large eddy diffusion coefficients. (3) Below a threshold in the diffusion rate, the meridional velocity decreases, commensurate with the mixing length hypothesis. Eddy heat conduction becomes important and shares with the Hadley cell advection in balancing the solar heating. The zonal velocities then reach large values near 100 m sec−1. (4) For large eddy diffusion and small heating rates, the zonal velocities decrease with decreasing planetary rotation rates. However, under condition (3), the zonal velocities are independent of the planetary rotation rate. Ramifications are discussed for related parameterizations in GCMs, emphasizing that eddy diffusion coefficients are governed by solar forcing and cannot be chosen independently.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have