Abstract
An essential requisite for the appearance and permanence of life on Earth is the onset of a continuous “cycling” of some key atoms and molecules. Cycling of elements probably also occurs on other objects and is driven by biological or a-biological processing. Here we investigate the cycling of some species in the icy Galilean satellites that are exposed to the intense fluxes of energetic particles coming from the Jupiter magnetosphere. Among the most studied effects of particle bombardment, there is the production of molecules not originally present in the sample. These newly synthesized species are irradiated as well and in some circumstances can re-form the original species, giving rise to a “cycle”. Here we discuss the cycling of some atoms (C, N, O, S) incorporated in molecules observed on the surface of the icy Galilean satellites.The results indicate that cycling of carbon atoms starts with solid elemental carbon. Irradiated in the presence of water ice, carbon dioxide is produced and forms carbonic acid and other organics whose irradiation re-produces carbon dioxide and solid carbon. The effect on nitrogen atoms is limited to a continuous cycle among nitrogen oxides (e.g. NO2 produces NO, and N2O).Oxygen is mostly incorporated in water ice. When irradiated, the large majority of the water molecular fragments recombine to re-form water molecules.The sulfur cycle occurs among SO2 (that cannot be produced by ion irradiation only), sulfuric acid and elemental sulfur.The results are discussed in view of their relevance to the expected space observations of the JWST telescope (NASA, ESA, CSA) and the JUICE (ESA) spacecraft.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.