Abstract
Studies in which subcellular systems were used suggest that neonatal myocardium has a sharply limited capacity to metabolize fatty acids. The relationship of these findings to the intact heart was tested on piglets, 8 h to 12 days of age. Left ventricular (LV) performance, O2 consumption (MVO2), and fatty acid (FA) uptake and oxidation were measured. Hearts were perfused at 70 cmH2O pressure with buffer containing 2% bovine serum albumin, insulin (100 microU/ml), 5 mM glucose, and 1.5 mM lactate. 14C-labeled palmitate was added (net FA, 0.5 mM). Washed erythrocytes were used to assure adequate O2 delivery. LV end-diastolic pressure (EDP) was controlled with a fluid-filled balloon. FA oxidation was estimated by measuring 14CO2 production. Hearts less than 24 h (group I, n = 6), those approximately 3 days (group II, n = 5), and those 6-12 days of age (group III, n = 10) were compared. Measurements at a low EDP (2-4 cmH2O) and at a higher EDP (7-9 cmH2O) were compared. At the low EDP, rates of FA oxidation for groups I-III averaged 30.0 +/- 3.0, 31.4 +/- 2.9, and 50.2 +/- 2.6 nmol.min-1.g-1, respectively. These values increased to 43.8 +/- 3.7, 42.6 +/- 2.5, and 63.8 +/- 4.0 nmol.min-1.g-1, respectively, at the higher EDP level (P less than 0.01 for each group). Thus within a few hours of birth, pig hearts are able to oxidize long-chain FA, and the rate of oxidation is linked to mechanical function. However, both the oxidation rate and the percentage of MVO2 accounted for by FA oxidation are greater in older hearts.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have