Abstract

This paper studies a stochastic vector-host epidemic model with direct transmission in random environment, governed by a system of stochastic differential equations with regime-switching diffusion. We first examine the existence and uniqueness of a positive global solution. Then, we investigate stability properties of the solution, including almost sure and pth moment exponential stability and stochastic asymptotic stability. Moreover, we study conditions for the existence and uniqueness of a stationary distribution. Numerical simulations are presented to illustrate the theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.