Abstract
In this paper, we consider the stochastic vector-host epidemic model with direct transmission. First, we study the existence of a positive global solution and stochastic boundedness of the system of stochastic differential equations which describes the model. Then we introduce the basic reproductive number $\mathcal{R}^s_0$ in the stochastic model, which reflects the deterministic counterpart, and investigate the dynamics of the stochastic epidemic model when $\mathcal{R}^s_0 1$. In particular, we show that random effects may lead to extinction in the stochastic case while the deterministic model predicts persistence. Additionally, we provide conditions for the extinction of the infection and stochastic stability of the solution. Finally, numerical simulations are presented to illustrate some of the theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Discrete and Continuous Dynamical Systems - Series B
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.