Abstract
In this paper we study the spruce-budworm interaction model with Holling's type II functional response. The existence, number and stability of equilibria are studied. Moreover, we prove the existence of relaxation oscillations by using singular perturbation method and give an asymptotic expression of the period of relaxation oscillations. Finally, the parameter ranges which allow the relaxation oscillations in several scenarios are explored and displayed by conducting numerical simulations.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Discrete and Continuous Dynamical Systems - Series B
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.