Abstract

A general class of the nonlinear time-varying systems of Ito stochastic differential equations is considered. Two problems on the partial stability in probability are studied as follows: 1) the stability with respect to a given part of the variables of the trivial equilibrium; 2) the stability with respect to a given part of the variables of the partial equilibrium. The stochastic Lyapunov functions-based conditions of the partial stability in probability are established. In addition to the main Lyapunov function, an auxiliary (generally speaking, vector-valued) function is introduced for correcting the domain in which the main Lyapunov function is constructed. A comparison with the well-known results on the partial stability of the systems of stochastic differential equations is given. An example that well illustrates the peculiarities of the suggested approach is described. Also a possible unified approach to analyze the partial stability of the time-invariant and time-varying systems of stochastic differential equations is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.