Abstract
An analysis is presented using six quantum-mechanical four-body distorted wave (DW) theories for double capture (DC) in ion-atom collisions at intermediate and high energies. They all satisfy the correct boundary conditions in the entrance and exit channels. This implies the usage of short-range perturbation potentials in compliance with the exact behaviors of scattering wave functions at infinitely large separations of particles. Specifically, total cross sections Q are analyzed for collisions of alpha particles with helium targets. Regarding the relative quantitative performance of the studied DW theories at different impact energies E, our main focus is on the sensitivity of Q to various collisional mechanisms. The usual mechanism in most DW theories assumes that both electrons undergo the same type of collisions with nuclei. These are either single or double collisions in one or two steps, respectively, per channel, but without their mixture in either channel. The signatures of double collisions in differential cross sections are the Thomas peaks. By definition, these cannot be produced by single collisions. There is another DC pathway, which is actually favored by the existing experimental data. It is a hybrid, two-center mechanism which, in each channel separately, combines a single collision for one electron with a double collision for the other electron. The ensuing DW theory is called the four-body single-double scattering (SDS-4B) method. It appears that this mechanism in the SDS-4B method is more probable than double collisions for each electron in both channels predicted by the four-body continuum distorted wave (CDW-4B) method. This is presently demonstrated for Q at energies E=[200,8000] keV in DC exemplified by alpha particles colliding with helium targets.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have