Abstract

Ophiolite complexes in southern Chile represent the remnants of the mafic portion of the floor of a Cretaceous back-arc basin which widened markedly from north to south over a length of 600 km. Detailed field and geochemical studies of ophiolites in the northern (Sarmiento complex) and southern (Tortuga complex) extremities of the originally wedge-shaped back-arc basin floor, indicate significant north—south differences in the mode of emplacement of basaltic magmas into the pre-existing continental crust, during the formation of the basin. In the northern narrow extremity of the original basin, mafic melts intruded into the continental crust over a diffuse zone causing extensive remobilization and reconstitution of the sialic continental crust. In the southern wider part of the original basin, mafic magmas appear to have been emplaced at a localized oceanic-type spreading centre. The observed north—south variations resulted in formation of back-arc floor with crustal characteristics ranging from intermediate between continental and oceanic to typically oceanic. These variations are interpreted as representing different stages of evolution of a back-arc basin which formed due to a subtle interplay between subduction induced back-arc mantle convection and the release of stress across the convergent plate boundary, possibly related to ridge subduction. Prior to the release of stress, heat transferred from mantle diapirs to the base of crust caused widespread silicic volcanism in South America. With the release of stress, mantle derived melts erupted to the surface along structural pathways resulting in extensive basaltic volcanism in a linear belt behind the island arc and the cessation of silicic volcanism. Initially, basaltic magmas intruded the continental crust over a diffuse region causing reconstitution of sialic crustal rocks. Progressive localization of the zone of intrusion of mafic magmas from the mantle eventually resulted in the development of an oceanic-type spreading centre. Observations in southern Chile and elsewhere suggest that variability in horizontal stress across a convergent plate boundary may be the overriding factor in determining the regional response of continental crust to subduction induced back-arc convection, and hence the mechanism of emplacement into the crust of mafic mantle melts. The various lithologies observed in southern Chile could also be expected to form during the opening phase of major ocean basins and to currently underlie Atlantic-type continental margins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call