Abstract
In the paper, a variational Bayesian method is used to identify the reaction coefficient for space-time nonlocal diffusion equations using nonlocal averaged flux data. To show the posterior measure to be well-defined, we rigorously prove that the forward operator is continuous with respect to the unknown reaction field. Then, gradient-based prior information is proposed to explore oscillation features in the reaction coefficient. Moreover, the Bayesian inverse problem is shown to be well-posed in Hellinger distance. To accurately characterize the posterior density using uncorrelated samples, an efficient variational Bayesian method is used to estimate the reaction coefficient in the nonlocal models. A few numerical results are presented to illustrate the efficacy of the proposed approach and confirm some theoretic discoveries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.