Abstract
Heat pipes are heat transfer devices capable of transferring large quantities of heat effectively and efficiently. A vapor chamber (VC) is a flat heat pipe. A novel VC with hollow condenser tubes embedded on the top of it is proposed. This paper reports on the experimental thermal performance of three VC devices embedded with hollow tubes and employed as heat sinks. The first device consisted of a VC with a single hollow tube while the other two VCs had an array of multi-tubes with different tube lengths. All three devices were tested under natural and force air convection cooling. An electrical resistance heater was employed to provide power inputs of 10 and 40 W. Surface temperatures were measured with thermocouple probes at different locations around the devices. The results show that temperatures increased with heater input while total device thermal resistances decreased. Force convection results in lower temperatures and lower resistance. Dry-out occurs at high input power and with too much condensi...
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have