Abstract
The heat sink with vapor chamber heat spreader has been the emerging design as it offers tremendous reduction in spreading resistance. However, this type of heat sinks suffer from the fin side temperature non-homogeneity, which hinders the heat transfer enhancement. The present study aimed to develop parallelogram fins integrated with heat pipes to increase the heat transfer performance of the heat sink with the vapor chamber heat spreader. The experimental and numerical investigations were performed on different heat sinks with different heat spreaders, including flat plate, vapor chamber, and vapor chamber combined with heat pipe. The air-cooled heat sink features a parallelogram fin configuration is proposed to tailor the temperature non-uniformity alongside the fins. The results showed that the overall thermal resistance of the heat sink with the vapor chamber and the vapor chamber combined with heat pipe spreader (no-cut fins) is about 50% and 55% lower than in the flat plate case. The proposed heat sink with vapor chamber combined with heat pipe spreader having a parallelogram fin structure offered about 61% reduction in thermal resistance and 45–50 °C reduction in chip temperature over the heat sink with flat plate heat spreader.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.