Abstract
Inflammatory bowel disease (IBD) is a chronic and potentially life-threatening inflammatory disease of gastroenteric tissue characterized by episodes of intestinal inflammation, but the underlying mechanisms remain elusive. Here, we explore the role and precise mechanism of Van-Gogh-like 2 (VANGL2) during the pathogenesis of IBD. VANGL2 decreases in IBD patients and dextran sulfate sodium (DSS)-induced colitis in mice. Myeloid VANGL2 deficiency exacerbates the progression of DSS-induced colitis in mice and specifically enhances the activation of NLRP3 inflammasome in macrophages. NLRP3-specific inhibitor MCC950 effectively alleviates DSS-induced colitis in VANGL2 deficient mice. Mechanistically, VANGL2 interacts with NLRP3 and promotes the autophagic degradation of NLRP3 through enhancing the K27-linked polyubiquitination at lysine 823 of NLRP3 by recruiting E3 ligase MARCH8, leading to optineurin (OPTN)-mediated selective autophagy. Notably, decreased VANGL2 in the peripheral blood mononuclear cells from IBD patients results in overt NLRP3 inflammasome activation and sustained inflammation. Taken together, this study demonstrates that VANGL2 acts as a repressor of IBD progression by inhibiting NLRP3 inflammasome activation and provides insights into the crosstalk between inflammation and autophagy in preventing IBD.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have