Abstract

Introduction:Recent work examining the impact of climate-change induced extremes on food-energy-water systems (FEWS) estimates the potential changes in physical flows of multiple elements of the systems. Climate adaptation decisions can involve tradeoffs between different system outcomes. Thus, it is important for decision makers to consider the potential changes in monetary value attributed to the observed changes in physical flows from these events, since the value to society of a unit change in an outcome varies widely between thing like food and energy production, water quality, and carbon sequestration.Methods:We develop a valuation tool (FEWSVT) that applies theoretically sound valuation techniques to estimates changes in value for four parameters within the food-energy-water nexus. We demonstrate the utility of the tool through the application of a case study that analyzes the monetary changes in value of a modelled heat wave scenario relative to historic (baseline) conditions in two study regions in the United States.Results:We find that food (corn and soybeans) comprises the majority (89%) of total changes in value, as heatwaves trigger physical changes in corn and soybeans yields. We also find that specifying overly simplified and incorrect valuation methods lead to monetary values that largely differ from FEWSVT results that use accepted valuation methods.Discussion:These results demonstrate the value in considering changes in monetary value instead of just physical flows when making decisions on how to distribute investments and address the many potential impacts of climate change-induced extremes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call