Abstract
The Mekong River supports unique biodiversity and provides food security for over 60 million people in the Indo-Burma region, yet potential changes to natural flow patterns from hydropower development are a major risk to the well-being of this system. Of particular concern is the ongoing and future development of 42 dams in the transboundary Srepok, Sesan and Sekong (3S) basin, which contributes up to 20% of the Mekong’s annual flows and provides critical ecosystem services to the downstream Tonle Sap Lake and the Mekong Delta. To assess the magnitude of potential changes, daily flows were simulated over 20 years using the HEC ResSim and SWAT models for a range of dam operations and development scenarios. A 63% increase in dry season flows and a 22% decrease in wet season flows at the outlet of the 3S basin could result from the potential development of new dams in the main 3S rivers under an operation scheme to maximize electricity production. Water-level changes in the Mekong River from this scenario are comparable with changes induced by the current development of Chinese dams in the Upper Mekong Basin and are significantly higher than potential flow changes from the proposed 11 mainstream dams in the Lower Mekong Basin. Dams on the upper sub-tributaries of the 3S basin have very little effect on seasonal flow regimes because most of those projects are run-of-the-river dams and have small reservoir storages. The effects on hourly flow changes resulting from intra-daily reservoir operations, sediment movement, water quality, and ecology require further study. Strategic site selection and coordinated reservoir operations among countries are necessary to achieve an acceptable level of development in the basin and to mitigate negative effects in seasonal flow patterns, which sustain downstream ecosystem productivity and livelihoods.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have