Abstract
We investigate the value function of an infinite horizon variational problem in the infinite-dimensional setting. First, we provide an upper estimate of its Dini–Hadamard subdifferential in terms of the Clarke subdifferential of the Lipschitz continuous integrand and the Clarke normal cone to the graph of the set-valued mapping describing dynamics. Second, we derive a necessary condition for optimality in the form of an adjoint inclusion that grasps a connection between the Euler–Lagrange condition and the maximum principle. The main results are applied to the derivation of the necessary optimality condition of the spatial Ramsey growth model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.