Abstract
This paper investigates a relationship between the maximum principle with an infinite horizon and dynamic programming and sheds new light upon the role of the transversality condition at infinity as necessary and sufficient conditions for optimality with or without convexity assumptions. We first derive the nonsmooth maximum principle and the adjoint inclusion for the value function as necessary conditions for optimality. We then present sufficiency theorems that are consistent with the strengthened maximum principle, employing the adjoint inequalities for the Hamiltonian and the value function. Synthesizing these results, necessary and sufficient conditions for optimality are provided for the convex case. In particular, the role of the transversality conditions at infinity is clarified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.