Abstract

Tumor-treating Fields (TTFields) is a promising cancer therapy technique in clinical application. Computational simulation of TTFields has been used to predict the electric field (EF) distribution in the human body and to optimize the treatment parameters. However, there are only a few studies to validate the accuracy of the simulation model. Here we propose a measurement platform with technical details for validating the simulation model of TTFields. We further constructed homogeneous agar phantoms with different conductivity for voltage measurement. With the measured voltages from six equidistance recording points in the cylinder phantom, we calculated the EF intensity in the phantoms at different frequencies. Comparing the measured values with the simulated values obtained from two types of source simulation, we found that the current source simulation model of TTFields is a reliable method for evaluating the EF intensity distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call