Abstract
With the advent of the Smart Home domain and the increasingly widespread application of Machine Learning (ML), obtaining power consumption data is becoming more and more important. Collecting real-world energy data using sensors is time consuming, expensive, error-prone and in some situations not possible. Therefore, we present the VA-Creator, a framework to create Virtual Appliances (VAs). These VAs synthesize power consumption patterns (PCPs) based on Neural Networks (NNs) which adapt their architecture to the training data structure to simplify the creation of new VAs. To be able to generate all appliance types available in a typical household we use various kinds of NN, including Multilayer Perceptrons (MLPs), Long Short-Term Memorys (LSTMs) and a specific Generative Adversarial Network (GAN) as well as different ML techniques such as XGBoost, selecting the appropriate technique depending on each appliance’s characteristics. We then compare the results of the ML models against real data and evaluate them by using Dynamic time Warping (DTW) as well as the classification performance of an MLP descriminator as metrics. Additionally, to ensure that the VAs allow to meaningfully train ML models, we use them to generate synthetic data and then train Non intrusive Load Monitoring (NILM) models in an extensive evaluation. The presented evaluation provides evidence that the VA models produce realistic and meaningful results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.