Abstract

Aim: The majority of machine learning (ML) models in healthcare are built on retrospective data, much of which is collected without explicit patient consent for use in artificial intelligence (AI) and ML applications. The primary aim of this study was to evaluate whether clinicians and scientific researchers themselves consent to provide their own data for the training of ML models. Materials and Methods: This survey was conducted through an anonymous online survey, utilizing platforms such as Telegram, LinkedIn, and Viber. The target audience comprised specific international groups, primarily Russian, German, and English-speaking, of clinicians and scientific researchers. These participants ranged in their levels of expertise and experience, from beginners to veterans. The survey centered on a singular, pivotal question: “Do You Consent to the Use of Your Biological and Private Data for Training Machine Learning and AI Models?” Respondents had the option to choose from three responses: “Yes” and “No”. Results: The survey was conducted in January 2024. A total of 119 unique and verified individuals participated in the survey. The results revealed that only 50% of respondents (63 persons) expressed consent to provide their own data for the training of ML and AI models. Conclusion: In the development of ML and AI models, particularly open-source ones, it is crucial to ascertain whether participants are willing to provide their private data. While ML algorithms can transform the nature of data, it is important to remember that the primary owner of this data is the individual. Our findings show that in 50% of the cases, even participants from scientific research and clinical backgrounds – individuals typically accountable for ensuring data quality in AI and ML model development – do not consent to the use of their data in AI and ML settings. This highlights the need for more stringent consent processes and ethical considerations in the utilization of personal data in AI and ML research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.