Abstract

The FTO/ITO transparent conductive films currently used in photoelectrochemical devices limit performance improvement due to their low conductivity, poor flexibility, and inability to transmit UV light. Ag nanowire-based films are a very promising alternative to address these problems, and are considered to be the next generation in transparent conductive film. Here, we prepared a cross-linked nano-network composed of ultra-long Ag nanowires by a special physical template method. The obtained Ag nanowire transparent conductive film has a transmittance of over 80% in a wide range of 200 nm–900 nm, a sheet resistance as small as 5.2 Ω/sq, and can be easily transferred to various substrates without damage. These results have obvious advantages over Ag nanowire films obtained by traditional chemical methods. Considering the special requirements of photoelectrochemical devices, we have multifunctionally enhanced the film by a TiO2 layer. The heat-resistant temperature of transparent conductive film was increased from 375 °C to 485 °C, and the mechanical stability was also significantly improved. The presence of the multifunctional layer is expected to suppress the carrier recombination in self-powered photoelectrochemical devices and improve the electron diffusion in the longitudinal direction of the electrode, while serving as a seed layer to grow active materials. The high-quality Ag nanowire network and functional layer synergize to obtain a UV–Visible transparent conductive film with good light transmittance, conductivity, and stability. We believe that it can play an important role in improving the performance of photoelectrochemical devices, especially the UV devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call