Abstract

Flexible silver nanowires (AgNWs) transparent conductive films (TCFs) were fabricated on poly(ethylene terephthalate) (PET) substrate by using spray coating process. Effects of concentration and amount of AgNWs suspension on the performances of optoelectronics and microstructures of AgNWs TCFs were investigated. The experimental results demonstrate that as the increase of both of concentration and amount of AgNWs suspension, the sheet resistance and nonuniformity factor of the sheet resistance (NUF) and transmittance of AgNWs TCFs decrease and the root mean square (RMS) roughness and figure of merit (FoM) and haze of the AgNWs TCFs increase, respectively, due to the increase of the deposition density of AgNWs on the substrate. The flexible AgNWs TCFs with excellent comprehensive performance, which is a NUF of 0.48, haze of 1.94%, FoM of 148.5, transmittance of 84.5%, and sheet resistance of [Formula: see text], can be obtained under the proper experimental conditions. The pressure treatment can improve the electrical conductivity of AgNWs TCFs due to the increase of contact area and the decrease of contact resistance. AgNWs TCF with pressure treatment also exhibits excellent reliability against mechanical bending over 1000 cycles. Our works demonstrate that flexible AgNWs TCFs with high performance can be obtained by using spray coating method, which is one of the common techniques for preparing coatings or films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call