Abstract

UV- and visible-excited fluorescence detection strategies were compared for nucleic acids separated by capillary electrophoresis (CE). A dual-polymer sieving matrix consisting of hydroxypropylmethylcellulose and poly(vinylpyrrolidone) was used to separate DNA fragments from a 100-base pair ladder and RNA from individual cells. Two nucleic acid dyes, SYBR Gold and SYBR Green I, were evaluated for their performance at both UV (275 nm) and visible (488 nm) excitation wavelengths. While SYBR Gold-bound RNA from single cells yielded a substantially reduced UV-excited signal compared to that with visible excitation (as expected), the sensitivity of SYBR Gold-bound double-stranded DNA was comparable for UV and Vis excitation wavelengths. This study reveals the first demonstration of using SYBR Gold dyes for DNA detection following separation with CE and also the first example of SYBR-based detection of RNA sampled and separated from individual cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.