Abstract

In this work, laser induced fluorescence (LIF) has been applied to probe PAHs in two atmospheric sooting flames: a premixed flat flame of methane and a Diesel turbulent spray one. Different laser excitation wavelengths have been used. UV excitations at 266 and 355nm have been operated from the fourth and the third harmonic frequencies of an Nd: YAG laser while visible excitations were emitted by an OPO pumped by the third harmonic of the YAG laser.Because of the different nature of the flames, the recorded fluorescence spectra highlight different spectral properties. The diffusion flame appears to provide a better selectivity to the LIF measurements because of the stratification of the PAHs size classes along the flame height. In the premixed flame, all PAHs size classes spatially coexist making the analysis of LIF measurements more complex.Upon visible excitations, it is highlighted in this paper that PAHs can absorb and fluoresce up to 680nm. Fluorescence emission spectra are shown to present Stokes and anti-Stokes components. Discussion of these non-conventional absorption and fluorescence features are provided on the basis of the knowledge of PAH spectroscopy and flame kinetics. Hence, different families of PAHs are successively envisaged and discussed to elucidate the experimental spectra recorded in both flames. It is shown that only a limited number of PAHs are able to lead to such spectral features. From this discussion, it appears that large pericondensed PAHs are unlikely to give rise to such signals. Some other possibilities are therefore discussed which could potentially correspond to the latest fluorescent gaseous species at the origin of the soot formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.