Abstract
Diacylglycerol kinase purified from pig brain cytosol could use sonication-dispersed diacylglycerol in the presence of its activator, phosphatidylcholine vesicles. However, the kinase failed to significantly use diacylglycerol cosonicated with phosphatidylcholine. Similarly, the kinase could not use diacylglycerol generated in microsomes by the back reaction of diacylglycerol choline phosphotransferase, though phospholipase C treatment of microsomes yielded effective substrate for the kinase. In order to elucidate the mechanism of these discrepant findings, we studied the activity of the purified kinase and Rhizopus arrhizus lipase utilizing dioleoylglycerol incorporated into various phospholipid vesicles. The inaccessibility of diacylglycerol contained in phospholipid vesicles was observed similarly for the two different enzymes. We considered that the apparent enzymic latency of diacylglycerol could be best accounted for by an extremely limited solubility of diacylglycerol in the outer leaflet of phospholipid bilayers. The experimental bases for this interpretation are: 1) diacylglycerol cosonicated with dihexanoyl phosphatidylcholine was exceptionally effective as substrate for the kinase; 2) the enzyme activities with cosonicated and separately sonicated lipids became similar when bile salts were present; 3) both enzymes could use diacylglycerol generated on phosphatidylcholine vesicles by a limited phospholipase C hydrolysis; and 4) phosphatidylcholine diacylglycerol vesicles at widely different molar ratios (from 1:0.014 to 1:0.2) were similarly ineffective as substrate for both enzymes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have