Abstract

The Fermi surface of graphite has been mapped out using de Haas-van Alphen (dHvA) measurements at low temperature with in-situ rotation. For tilt angles θ>60° between the magnetic field and the c axis, the majority electron and hole dHvA periods no longer follow a cos(θ) behavior demonstrating that graphite has a three-dimensional closed Fermi surface. The Fermi surface of graphite is accurately described by highly elongated ellipsoids. A comparison with the calculated Fermi surface suggests that the Slonczewski-Weiss-McClure trigonal warping parameter γ(3) is significantly larger than previously thought.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.