Abstract

An altered behavioral response to positive reinforcement has been proposed to be a core deficit in attention deficit hyperactivity disorder (ADHD). The spontaneously hypertensive rat (SHR), a congenic animal strain, displays a similarly altered response to reinforcement. The presence of this genetically determined phenotype in a rodent model allows experimental investigation of underlying neural mechanisms. Behaviorally, the SHR displays increased preference for immediate reinforcement, increased sensitivity to individual instances of reinforcement relative to integrated reinforcement history, and a steeper delay of reinforcement gradient compared to other rat strains. The SHR also shows less development of incentive to approach sensory stimuli, or cues, that predict reward after repeated cue-reward pairing. We consider the underlying neural mechanisms for these characteristics. It is well known that midbrain dopamine neurons are initially activated by unexpected reward and gradually transfer their responses to reward-predicting cues. This finding has inspired the dopamine transfer deficit (DTD) hypothesis, which predicts certain behavioral effects that would arise from a deficient transfer of dopamine responses from actual rewards to reward-predicting cues. We argue that the DTD predicts the altered responses to reinforcement seen in the SHR and individuals with ADHD. These altered responses to reinforcement in turn predict core symptoms of ADHD. We also suggest that variations in the degree of dopamine transfer may underlie variations in personality dimensions related to altered reinforcement sensitivity. In doing so, we highlight the value of rodent models to the study of human personality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call